Quick Start

Get your first AI agent running in 5 minutes

Quick Start

Your first AI agent in 5 minutes

Get a working AI agent with REST API endpoints and structured AI outputs.

Prerequisites: Python 3.10-3.13. No Python? Run: curl -LsSf https://astral.sh/uv/install.sh | sh && uv venv --python 3.13 && source .venv/bin/activate


1. Install Agentfield

Install the CLI:

curl -sSf https://agentfield.ai/get | sh

Reload your shell and verify:

source ~/.zshrc
af --version

You should see:

AgentField Control Plane
  Version:    0.1.8
  Commit:     fb9f5e2
  Built:      2025-11-17T23:03:17Z
  Go version: go1.24.2
  OS/Arch:    darwin/arm64

Install the Python SDK:

pip install agentfield

2. Create and Start Your Agent

# Create your agent (uses sensible defaults)
af init my-agent --defaults

# Start the control plane (in a new terminal)
af server

# Run your agent (in your project directory)
cd my-agent
pip install -r requirements.txt
python main.py

You'll see:

Agent 'my-agent' starting...
Connected to Agentfield server
Registered endpoints:
  - my-agent.demo_echo

Agent ready at http://localhost:8001

3. Test Your Agent

Your agent is now a REST API. Test it:

curl -X POST http://localhost:8080/api/v1/execute/my-agent.demo_echo \
  -H "Content-Type: application/json" \
  -d '{"input": {"message": "Hello, Agentfield!"}}'

Response:

{
  "execution_id": "exec_20251117_161256_3d1irv83",
  "status": "succeeded",
  "result": {
    "original": "Hello, Agentfield!",
    "echoed": "Hello, Agentfield!",
    "length": 18
  },
  "duration_ms": 8
}

It works! Your agent is running and responding to requests.


4. Enable AI Features

The demo_echo endpoint works without any API keys. Now let's enable AI-powered capabilities.

Set your API key

Create a .env file in your my-agent directory:

# my-agent/.env
OPENAI_API_KEY=sk-...

Using a different provider? Set OPENROUTER_API_KEY or ANTHROPIC_API_KEY instead. See supported models.

Install python-dotenv

pip install python-dotenv

Update main.py

Open main.py and make these changes:

  1. Add imports at the top:
import os
from dotenv import load_dotenv
load_dotenv()
  1. Uncomment and update the ai_config section:
app = Agent(
    node_id="my-agent",
    agentfield_server="http://localhost:8080",
    version="1.0.0",
    dev_mode=True,
    ai_config=AIConfig(
        model="openai/gpt-4o",  # LiteLLM format: provider/model
        temperature=0.7,
    ),
)

Agentfield uses LiteLLM under the hood. Model names follow the provider/model format (e.g., openai/gpt-4o, anthropic/claude-sonnet-4-20250514, openrouter/meta-llama/llama-3-70b).

Uncomment the AI reasoner

Open reasoners.py and uncomment the SentimentAnalysis class and analyze_sentiment function (around line 15).

Restart and test

# Stop your agent (Ctrl+C) and restart it
python main.py

Now test the AI-powered endpoint:

curl -X POST http://localhost:8080/api/v1/execute/my-agent.demo_analyze_sentiment \
  -H "Content-Type: application/json" \
  -d '{"input": {"text": "I love building with Agentfield!"}}'

Response:

{
  "execution_id": "exec_20251117_161355_dd2rdzzb",
  "status": "succeeded",
  "result": {
    "sentiment": "positive",
    "confidence": 0.95,
    "key_phrases": ["love building", "Agentfield"],
    "reasoning": "The text expresses strong positive emotion with enthusiastic language."
  },
  "duration_ms": 2943
}

AI is working! Your agent now has structured AI outputs with type-safe schemas.


What Just Happened?

You created an agent with two working endpoints:

  • demo_echo - Works immediately (no API keys needed)
  • demo_analyze_sentiment - AI-powered with structured output
  • ✅ Auto-generated REST API endpoints
  • ✅ Type-safe JSON responses via Pydantic schemas

The AI reasoner uses structured output—the response always matches your schema, making it easy to integrate into real applications.


Next Steps

Want to use Go instead of Python? Check out the Build Your First Agent guide for language options and detailed explanations.